Operational on-line modelling tool: Evaluation of the three most common techniques (Gaussian puff, Eulerian and Lagrangian).
Application on Fos-Berre data.

Alexandra Fresneau1, Julien Commanay1, Jacques Moussafir1, Jean-Marc Lacome2, Armand Albergel1,

1ARIA Technologies SA 17, Route de la Reine 92517 Boulogne-Billancourt France
2Institut National de l’Environnement Industriel et des Risques (INERIS) Verneuil-en-Halatte

aalbergel@aria.fr
Summary

- **Context**
 - Regulatory constraints
 - Need of a supervision tool

- **General architecture**
 - Input data
 - Dispersion model

- **Application on « Fos-Berre » data**
 - Methodology
 - Results

- **Conclusion**
Regulatory constraints

- **Collective air pollution control in an industrial basin**
 - Share the responsibility and the investments on air concentration bases and not only on total year emission
 - Ambient air monitoring networks are generally not enough to dense to cover the basin

- **Individual air control for some industries**
 - Example of a domestic waste incinerator: Monitoring the impact in the vicinity of the installation (Art 30 et 31 of the law 20 September 2002 concerning burning installation of hazardous and non-hazardous waste):
 - Initial diagnostic: before the installation opening
 - Between 3 and 6 months: after the installation running
 - Routine update: at least annually

 - Reference: INERIS (approved by the French MOE) « Méthode de surveillance des retombées des dioxines et furanes autour d'une UIOM » 2001
Need of an on-line Supervision tool

A global tool to:

- Optimize the atmospheric environment supervision
- Improve internal and external communication (HQ and quick adaptability): neighborhood, Local authorities, routine reporting, non governmental association...
- Analyze, understand and explain the impact of their own releases

How?

- On-line concentration and deposition of main pollutants (NO₂, dioxines, heavy metals...) considering real emissions and actual meteorological data
 - Comprehensive Maps
 - Help to design measurement campaign
 - Ready to run in case of accidental / exceptional releases

⇒ A detailed knowledge of the impact of the installation(s)
Need of an on-line Supervision tool

Real-time supervision of atmospheric impact using on-line emission and meteorological data:

- On-line emission data collecting (sensor may be provided)
- On-line meteorological data (specific sensors or Met office data)
- Running a dispersion and impact evaluation software on a routine mode after site configuration and validation.
Need of an on-line Supervision tool

- Editing results every 3 hours:
 - concentration and deposition maps
 - summary table of values

- Continuous update of computational values on key points:
 - daily,
 - Monthly
 - Annually (main statistics as centils)

- Time series of meteorological data and emission
 - daily
 - Monthly and annual wind roses

- Data base backup for all data and results (Yearly base)

- Detailed run on request (peak, accidental or exceptional release)

- Optimization (measurement, day-to-day reporting,…) of the supervision
General flowchart

Meteo data
Wind, temperature, rain

Site

Emission monitoring
Specific analyses as heavy metals and dioxins...
Sampling program

Self control continuous measurements: HCl, CO, CO2, SO2, NOx, COT, NH3, H2O, O2, N2O, Débit et Température des fumées

Database consolidation
Automatic impact model run

Results

- Air Concentration data
 - Maximum: Localization and values
 - Editing values on a list of key points
- Monthly and annual synthesis
- Maps of concentrations et deposition (dry and with rain)
- Detailed peak episode on request
- Automatic and exhaustive data backup and archives
Where are the difficulties?

- **Numerical geographical data → OK**
 - Topography and land use largely available worldwide now and especially in Europe
 - GIS are widely used

- **Meteorological data**
 - Better and denser network
 - Numerical forecast and analyses better quality
 - Progress on Meso-scale modeling

- **Emission**
 - Better understanding using universal classification like SNAP and emission factor
 - Self-monitoring emission by main industries

- **Computational and numerical network**
 - Power increased on low cost computer
 - Internet / intranet / ADSL communication

- **Numerical techniques become central**
Application on FOS-BERRE AREA

Main Industrial area

- Raffineries, Petrochemistry, Steelwork, Power Plant
- Many SO\(_2\) episode where regulatory threshold are exceeded
- AI RFOBEP: AQ Monitoring network association
Application on FOS-BERRE AREA

- 3D meteorological building: MINERVE
 - Interpolation
 - Mass consistency
 - Topography and land use respect

- Output compatible with
 - Gaussian puff model
 - Eulerian model
 - Lagrangian model
Application on FOS-BERRE AREA

- Gaussian Puff
 - Model: TRAMES
 - 3D trajectories
 - Sigma based on MINERVE Kz
 - Mixing height reflexion
 - Briggs plume rise
 - Dry and wet deposition
Application on FOS-BERRE AREA

- Eulerian Model
 HERMES
 - Centered scheme
 - Kz given by MI NERVE
 - Briggs plume rise
 - Dry and wet deposition
Application on FOS-BERRE AREA

- Lagrangian Model
 - SPRAY
 - Thomson, 1987
 - Adaptative time step
 - Own turbulence scheme based on data
 - Anfossi plume rise
 - Dry and wet deposition
Application on FOS-BERRE AREA

Lagrangian
(SPRAY)

05/26/1993
00:00:00.00
Application on FOS-BERRE AREA
Application on FOS-BERRE AREA
Application on FOS-BERRE AREA

Date:
- 26/5/93 0:00
- 26/5/93 3:00
- 26/5/93 6:00
- 26/5/93 9:00
- 26/5/93 12:00
- 26/5/93 15:00
- 26/5/93 18:00
- 26/5/93 21:00
- 27/5/93 0:00

Graph:
- Microg/m3
- Date

Legend:
- CRAU - Measures
- Bouffees - Calculs
- Particles - Calculs
- Euler - Calculs
Application on FOS-BERRE AREA

Ecart Mesures / Calculs Concentrations horaires

Lagrangian
SPRAY

Gaussian Puff
TRAMES

Hourly data
Eulerian
HERMES

% d'occurrences

<-50% [-50%;-25%] [-25%;-5%] [-5%;+5%] [5%;25%] [25%;50%] >50%

Bouffées
Particules
Eulérien

9th Harmonisation Conference Garmisch-Partenkirchen
Application on FOS-BERRE AREA

Ecart Mesures / Calculs moyenne journalière

% d'occurrences

Lagrangian
SFRAY

Gaussian Puff
TRAMES

Eulerian
HERMES

Daily data

Bouffées
Particules
Eulérien

<50% [-50%;-25%] [-25%;-5%] [-5%;+5%] [5%;25%] [25%;50%] >50%

Bouffées
Particules
Eulérien

9th Harmonisation Conference Garmisch-Partenkirchen
Conclusion

■ Lagrangian model (SPRAY) gives the best scores:
 ✓ Independence from grid size
 ✓ CPU time acceptable

■ Eulerian model (HERMES) shows that grid is too large for industrial plume
 ✓ CPU time important but not sensitive to the number and geometry of sources
 ✓ Easier to introduce chemical reaction

■ Gaussian Puff Model
 ✓ Not so bad!
Application on FOS-BERRE AREA

<table>
<thead>
<tr>
<th></th>
<th>MINERVE</th>
<th>HERMES</th>
<th>TRAMES</th>
<th>SPRAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nombre de mailles en X, Y, Z et pas de mailles en X et Y</td>
<td>NX = 44 NY = 31 NZ = 21</td>
<td>NX = 44 NY = 31 NZ = 21</td>
<td>NX = 44 NY = 31 NZ = 21</td>
<td>NX = 44 NY = 31 NZ = 21</td>
</tr>
<tr>
<td></td>
<td>? X = ? Y = 1km</td>
</tr>
<tr>
<td>Hauteur du 1er niveau vertical</td>
<td>15 mètres</td>
<td>15 mètres (DT = 4s)</td>
<td>15 mètres</td>
<td>10 mètres</td>
</tr>
<tr>
<td>Nombre d'espèces</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Nombre de sources</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Nombre de particules</td>
<td></td>
<td></td>
<td></td>
<td>15 / 10 sec.</td>
</tr>
<tr>
<td>Temps de calcul pour 24 h (stockage toutes les heures)</td>
<td>5 minutes</td>
<td>1 heure</td>
<td>3 minutes</td>
<td>10 minutes</td>
</tr>
<tr>
<td>Taille du fichier résultat</td>
<td>30 Mo</td>
<td>12 Mo</td>
<td>6 Mo / espèces</td>
<td>9 Mo (concentrations) 174 Mo (particules)</td>
</tr>
<tr>
<td>Taille du fichier visualisation</td>
<td>30 Mo</td>
<td>12 Mo</td>
<td>6 Mo / espèces</td>
<td>9 Mo</td>
</tr>
</tbody>
</table>