A modelling system for predicting urban PM$_{2.5}$ concentrations. Numerical results and evaluation against the data in Helsinki

Ari Karppinen, Jaakko Kukkonen, Mari Kauhaniemi, Jari Härkönen, FMI

Tarja Koskentalo, Anu Kousa YTV
1. Aims

2. The measurements

3. The modelling system
 • Emission modelling
 • Dispersion modelling
 • Background modelling

4. Results and Conclusions
 • spatial concentration distributions
 • comparison with measurements
 • problems & further work
Aims

Development and validation of a modelling system for predicting urban PM$_{2.5}$ concentrations
Measurements

- YTV – monitoring network (continuous)
- EMEP stations (continuous)
- Measurement campaigns
PM MONITORING SITES in HELSINKI METROPOLITAN AREA

<table>
<thead>
<tr>
<th>Site</th>
<th>Site type</th>
<th>Vehicles / day</th>
<th>Distance from street</th>
<th>Measured average hourly quantities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Töölö</td>
<td>Urban traffic</td>
<td>12 000 - 25 000</td>
<td>5 m</td>
<td>PM$_{10}$</td>
</tr>
<tr>
<td>Vallila</td>
<td>Urban traffic</td>
<td>14 000</td>
<td>14 m</td>
<td>PM${2.5}$ & PM${10}$</td>
</tr>
<tr>
<td>Leppävaara</td>
<td>Suburban traffic</td>
<td>15 000 - 61 000</td>
<td>25 m</td>
<td>PM$_{10}$</td>
</tr>
<tr>
<td>Kallio</td>
<td>Urban background</td>
<td>8000</td>
<td>80 m</td>
<td>PM${2.5}$ & PM${10}$ since ‘99</td>
</tr>
<tr>
<td>Luukki</td>
<td>Regional background</td>
<td>4000</td>
<td>800 m</td>
<td>PM$_{10}$</td>
</tr>
</tbody>
</table>
Modelling systems (FMI)

NWP models
- ECMWF
- HIRLAM
 - Atlantic
 - North-Europe
 - LINUX

UAP models - LRT, regional
- MATCH (SMHI)
 - LRT, meso
- HILATAR
 - LRT, meso
- SILAM
 - LRT, meso, radioactivity
- BUOYANT
 - meso, micro, fires

UAP models - urban, local
- CAR-FMI, roadside
- UDM-FMI, urban
- OSPM (NERI), street canyon
- EXPAND (FMI, YTV)
 - population exposure
- ESCAPE, chemical accidents
- MONO32 (U Helsinki)
 - aerosol processes

Geographical information
- MapInfo

Emission characteristics
- Measurements
- Meteorology, traffic, pollution

Traffic simulation
- Macro-EMME/2 (YTV)
- Micro-HUTSIM (TKK)

Emission inventories
- VTT, LIISA
- Cornair

Weather prediction, met. pre-processing
- HIRLAM, MPP-FMI

Dispersion of pollutants
- stationary sources: UDM-FMI
- roadside: CAR-FMI
- street canyon: OSPM (NERI)
- forecasting air quality: API-FMI

Activity Model

Exposure model

Statistical Analysis

GIS
- MapInfo

Visualisation

MM5 ?

9th Harmonisation Conference
Garmisch-Partenkirchen
02/06/2004

Harmo 9, Ari Karppinen
Model for urban fine particles

\[\text{PM}_{2.5}(r,t) = \text{PM}_{2.5}^{tr}(r,t) + \text{PM}_{2.5}^{st}(r,t) + \text{PM}_{2.5}^{bg}(t) \]

- \(\text{PM}_{2.5}(r,t) \): total measured concentration at time \(t \), at spatial coordinate \(r \)
- \(\text{PM}_{2.5}^{tr}(r,t) \): vehicular traffic (exh+non-exh)
- \(\text{PM}_{2.5}^{st}(r,t) \): stationary sources
- \(\text{PM}_{2.5}^{bg}(t) \): background (LRT)
Assumptions:

- Exhaust traffic emissions purely PM$_{2.5}$
- Other traffic related emissions are directly proportional to exhaust emissions
- Regional and long-range transported background purely PM$_{2.5}$
- Ion-sum is a good proxy for LRT
Most important model components

1. Emission model for PM$_{2.5}$
 - **coldstarts** taken into account
2. Roadside dispersion model CAR-FMI
3. Statistical model for regional and long-range transported PM$_{2.5}$
Daily averaged PM$_{2.5}$ line source emissions (kg/d/km) in the Helsinki Metropolitan Area in 2002
Daily averaged PM$_{2.5}$ line source emissions (kg/d/km) in the Helsinki Metropolitan Area in 2002

Saturday
Daily averaged PM$_{2.5}$ line source emissions (kg/d/km) in the Helsinki Metropolitan Area in 2002

Sunday

- 3 to 7.9
- 1 to 3
- 0.5 to 1
- 0.1 to 0.5
- 0 to 0.1

Kilometres
Daily averaged cold start emissions of PM$_{2.5}$ (kg/d/km2) in the Helsinki Metropolitan Area in 2002

T > 0°C
Weekday

T < 0°C, 41% preheating
Weekday
Daily averaged cold start emissions of PM$_{2.5}$ (kg/d/km2) in the Helsinki Metropolitan Area in 2002

- T > 0°C
- Saturday

- T < 0°C, 41% preheating
- Saturday

Daily averaged cold start emissions of PM$_{2.5}$ (kg/d/km2) in the Helsinki Metropolitan Area in 2002
Daily averaged cold start emissions of PM$_{2.5}$ (kg/d/km2) in the Helsinki Metropolitan Area in 2002

T > 0°C
- Sunday

T < 0°C, 41% preheating
- Sunday

Daily averaged cold start emissions of PM$_{2.5}$ (kg/d/km2) in the Helsinki Metropolitan Area in 2002.
Annual average PM$_{2.5}$ concentrations (µg/m3) in the Helsinki Metropolitan Area in 2002

- Solely exhaust emissions from local traffic
- All emissions from local traffic
Annual average PM$_{2.5}$ concentrations (µg/m³) in the Helsinki Metropolitan Area in 2002

All local emissions and regional background

- > 10
- 9 to 10
- 8 to 9
- 7 to 8
- < 7

Kilometres
Maximum hourly PM$_{2.5}$ concentrations (µg/m3) in the Helsinki Metropolitan Area in 2002

Solely exhaust emissions from local traffic

All emissions from local traffic

Maximum hourly PM$_{2.5}$ concentrations (µg/m3) in the Helsinki Metropolitan Area in 2002

Harmo 9, Ari Karppinen 02/06/2004
Maximum hourly PM$_{2.5}$ concentrations (µg/m3) in the Helsinki Metropolitan Area in 2002

All local emissions and regional background

- > 100
- 80 to 100
- 60 to 80
- 40 to 60
- < 40

Kilometres
Predicted vs. observed daily mean PM$_{2.5}$ concentrations in Helsinki in 2002

- Computations by mainframe version of CAR-FMI line source model
- Observations from YTV monitoring stations at Vallila and Kallio
Location of YTV monitoring stations
Predicted vs. observed daily mean PM$_{2.5}$ concentrations – scatter plot & IA

VALLILA
- \(y = 0.97x - 0.75 \)
- \(R^2 = 0.57 \)

KALLIO
- \(y = 0.95x + 1.02 \)
- \(R^2 = 0.60 \)

VALLILA: \(R^2 = 0.57 \), IA = 0.84

KALLIO: \(R^2 = 0.60 \), IA = 0.86
Predicted vs. observed daily mean PM$_{2.5}$ concentration in **Vallila** – scatter plot in terms of wind direction

Downwind < 180 deg

Upwind > 180 deg

\[y = 1.07x - 0.69 \quad R^2 = 0.63 \]

\[y = 0.94x - 1.19 \quad R^2 = 0.57 \]
Predicted and observed daily mean PM$_{2.5}$ concentrations in Vallila – seasonal variation

Winter (January, February, December)

- **PM$_{2.5}$ (µg/m3)**
 - Predicted: [Data points]
 - Observed: [Data points]

Spring (March, April, May)

- **PM$_{2.5}$ (µg/m3)**
 - Predicted: [Data points]
 - Observed: [Data points]

Summer (June, July, August)

- **PM$_{2.5}$ (µg/m3)**
 - Predicted: [Data points]
 - Observed: [Data points]

Autumn (September, October, November)

- **PM$_{2.5}$ (µg/m3)**
 - Predicted: [Data points]
 - Observed: [Data points]
Predicted and observed daily mean PM$_{2.5}$ concentrations in Kallio – seasonal variation
Conclusions

- Modelling system has been developed for urban PM$_{2.5}$
 - Applicable also for other European cities (emission coefficients country-specific)
 - Includes also the evaluation of regional background PM$_{2.5}$

- Spatial concentration distributions of PM$_{2.5}$
 - The influence of traffic and LRT on total concentrations
 - The annual average, maximum hourly and guideline concentrations

- Evaluation of the model performance against the results of the urban monitoring network
 - Good statistical agreement of the predicted and measured daily concentrations
Challenges for future research

• PM emission modelling – especially non-combustion and cold start emissions, and suspension (studied in SAPHIRE, OSCAR)
• The contribution of LRT is important – Direct regional PM$_{2.5}$ measurements would be welcome; continental scale PM modelling
• Modelling of the aerosol processes, including size distributions and chemical composition (studied in SAPHIRE)
References

This is the end …

CREDITS

Academy of Finland
FMI Dispersion Modelling Group
YTV Environmental Office