A Methodology for Seasonal Photochemical Model Simulation Assessment

Veronica Gabusi and Marialuisa Volta
{gabusi,lvolta}@ing.unibs.it

Dipartimento di Elettronica per l’Automazione
Università degli Studi di Brescia - Italy
Outline

• Seasonal photochemical model assessment
 – Critical issues
 – The proposed methodology

• Application cases
 – Northern Italy domains
 – GAMES Modelling System
 – 1996 Summer Season
 – The CityDelta Modelling Exercise

• Conclusions
Seasonal Simulation Assessment

Critical issues:

• no standard performance procedure exists
• each run of the models results in a large amount of output data
• Comparison between punctual and average values

• to focus the analysis for a **restricted number of typical concentration patterns**
• to summarize the simulation results over long time period by means of **proper performance indexes**.
The Model Evaluation Methodology

(1) Clustering process
- Used for classifying patterns
 - Ozone concentrations
 - Daily shape, peak distribution
- Each cluster can be represented by a single station
 - Representative station
 - Virtual station

(2) Sites Identification
- Statistical indicators (EPA, EC)
- Other Statistical indexes
- O3 exposure values
- Percentile values
- Model inter-comparison
Seasonal Application Cases

- Simulation performed with GAMES system over Northern Italy domains
- Preliminary Application: 1996 Summer Season - Contribution to EUROTRAC2/SATURN Project
- CityDelta Modelling Exercise
The GAMES system
Gas Aerosol Modelling Evaluation System

- ECMWF model
 Wind and Temperature profile
- Topography
- Land Use
- Local measurements
 - Synop
 - Regional network
- Upper air sounding data
 - Temperature profiles

CALMET

- 3D wind and temperature fields
 - Turbulence parameters

CALGRID

- Initial and boundary conditions

IC_BC

- EMEP model
 - Concentrations

Emission model

- CORINAIR
 - Emission inventory
 - Emission time patterns
 - VOC splitting profiles

Spatial disaggregating coefficients

Emission fields

3-dimensional pollutant Concentration patterns

DEA- Università degli Studi di Brescia
Case I: the selected domain

- 240km x 232km
- complex terrain
- industrialised and populated area
- close road network
- critical anthropic emissions
- the simulated period:
 - April-September 1996
Clustering process and sites identification

Case I
Statistical Indexes

- US EPA guidelines:
 - Mean Normalized Bias Error (MNBE), ±5±15%
 - Mean Normalized Gross Error (MNGE), ±30±35%

- EC Directive:
 - the 1 hour averages (daytime), ±50%
 - the 8 hours daily maximum, ±50%

- Model intercomparison:
 - CALGRID
 - STEM

\[
\frac{1}{n} \sum_{i=1}^{n} \frac{C_{\text{mod}}(x,t) - C_{\text{obs}}(x,t)}{C_{\text{obs}}(x,t)}
\]

\[
\frac{1}{n} \sum_{i=1}^{n} \frac{|C_{\text{mod}}(x,t) - C_{\text{obs}}(x,t)|}{C_{\text{obs}}(x,t)}
\]
Model inter-comparison

LEDAs and HEDAs in Case I

LEDA: low emission density area
HEDA: high emission density area
Case II:
the selected domain

- 300km x 300km
- the simulated period: April-September 1999
Ozone pattern classification (I)

Cluster Tree

- COSSATO
- VA_VIDOL
- CHIAVENN
- RE_MASSE
- PARMA
- PIACENZA
- CREMA
- AGRATE
- VIMERCAT
- LIMITO
- MEDA
- ARCONATE
- MOTTA_V
- MAGENTA
- CASTELLA

Distances

UTM (km)

UTM (km)
Ozone pattern classification (II)

Case II

DEA- Università degli Studi di Brescia
Representative station definition

- Representative station
- Virtual station

new clustering process
averaging, hour by hour, the measurements recorded in the stations belonging to the group

Cluster 1
Cluster 3
Cluster 5

Rural cluster
Urban cluster
Suburban cluster

Varese_obs Varese_comp
Vimecathes_obs Vimecathes_comp
Magenta_obs Magenta_comp

0 4 8 12 16 20 24
[hour]
Model evaluation (I)

Performance evaluation

- Graphical analysis:
 - time series, scatter plots,

- Statistical indicators:
 - US EPA guidelines:
 - Mean Normalized Bias Error (MNBE), ±5±15%
 - Mean Normalized Gross Error (MNGE), 30±35%

<table>
<thead>
<tr>
<th></th>
<th>Cluster</th>
<th>MNBE</th>
<th>MNGE</th>
<th>R</th>
<th>RMSE</th>
<th>MNBE</th>
<th>MNGE</th>
<th>R</th>
<th>RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-7</td>
<td>22</td>
<td>0.37</td>
<td>17.52</td>
<td>-2</td>
<td>11</td>
<td>0.41</td>
<td>14.05</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>13</td>
<td>26</td>
<td>0.6</td>
<td>14.48</td>
<td>28</td>
<td>13</td>
<td>0.61</td>
<td>15.34</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-10</td>
<td>25</td>
<td>0.63</td>
<td>20.11</td>
<td>-3</td>
<td>15</td>
<td>0.64</td>
<td>16.47</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-18</td>
<td>23</td>
<td>0.62</td>
<td>22</td>
<td>-14</td>
<td>12</td>
<td>0.65</td>
<td>17.66</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td>33</td>
<td>0.59</td>
<td>17.24</td>
<td>19</td>
<td>16</td>
<td>0.69</td>
<td>14.15</td>
<td></td>
</tr>
</tbody>
</table>

O3 concentrations

DEA- Università degli Studi di Brescia
Model evaluation (II)

Case II

Urban cluster

DEA- Università degli Studi di Brescia
Conclusions

• Methodological approach to evaluate seasonal photochemical simulation
 – Simulations performed in complex domains
 • 1996 Summer Season (SATURN) – model inter-comparison
 • 1999 Summer Season (CityDelta Project)

• Main issues:
 – Statistical and graphical methods
 – Each station or representative station

The evaluation of representative stations should be preferred with long-term simulation assessments